
LA-UR-18-24496
Approved for public release; distribution is unlimited.

Title: An Introduction to UNIX, Emacs, Latex, and Python

Author(s): Mockler, Jack Henry

Intended for: Report

Issued: 2018-05-23

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

An Introduction to UNIX,
Emacs, Latex, and Python

Jack H Mockler
XTD-NTA

May 21, 2018

Introduction

This document is designed to give a brief introduction to the UNIX Operating
System, Emacs, Latex, and Python. Section 1 focuses on UNIX, and presents
the basics of the file system, a variety of common commands, and a handful
of slightly more in depth topics. Section 2 introduces Emacs and its somewhat
unusual keyboard controls. In Section 3, the basics of creating a document in
Latex are demonstrated. Finally, Section 4 provides the foundation needed to
begin programming in Python.

1 UNIX

The UNIX Operating System controls and allocates the resources on a computer.
Commands in UNIX are entered through a terminal window, which can generally
be opened by right clicking on the desktop or through the Applications menu.
The terminal window provides a command line, where commands can be entered
and then executed by pressing the return key. The terminal window also outputs
results from many commands.

1.1 File System

UNIX provides a file system based on files and directories. A file stores informa-
tion. A directory can contain both files and other directories. Four important
directory references are:

˜ The home directory, and the initial present working directory when a terminal
is opened.

. The present working directory, or the directory the computer is currently
looking at.

.. The directory that contains the present working directory. Often referred to
as the directory one level above the current one.

/ The root directory, the top of the directory hierarchy.

This file system can be visualized as a directory tree:

1

Figure 1: A visual of part of a UNIX directory tree structure.

Files are often referred to by their filename, e.g. HelloWorld.txt. However, a
file’s complete name is called a path, and includes all the directories from the
root to the given file. For example, from Figure 1 the path to HelloWorld.txt
would be:

/Users/home/you/Documents/HelloWorld.txt

For practical use, files can be referred to by just their filename if they are in
the present working directory. Otherwise, either the full path to the file, or the
path starting at the present working directory is required for the computer to
be capable of finding it.

Some common commands for general navigation and file management include:

date - Returns the current time and date.

$ date

Tue Apr 17 12:50:34 MDT 2018

$

echo string - Echoes the arguments provided.

$ echo hello world

hello world

$

mkdir name - Creates a directory named name.

2

$ mkdir ~/Documents/ExampleFolder

$ mkdir ~/Documents/ExampleFolder/ExampleSubfolder

$

cd path - Changes the present working directory to the directory indicated by
path.

$ cd ~/Documents/ExampleFolder

$

pwd - Returns the path to the present working directory.

$ pwd

/home/you/Documents/ExampleFolder

$

touch name - Creates an empty file named name.

$ touch exampleFile

$

ls - Lists the contents of the present working directory. The path to a different
directory can be provided to list that directory instead.

$ ls

exampleFile ExampleSubfolder

$

The ls command is a good example to introduce options. Options are usually
indicated by a ’-’ followed by a letter, and modify the function of a command
in some fashion. A common option for the ls command is ls -l, which lists the
contents of a directory like ls, but with additional information about each item.

$ ls -l

total 3

-rw-------. 1 you 0 Apr 27 10:02 exampleFile

drwx--x---. 2 you 2 Apr 27 10:03 ExampleSubfolder

$

3

The information provided, from left to right, is user permissions, the number
of links, the owner, the number of characters contained, the date last modified,
and the name of the item. There will be more detail on permissions later in the
section.

cp file1 file2 - Copies file1 into file2. Creates file2.

$ cp exampleFile copiedExample

$ ls

copiedExample exampleFile ExampleSubfolder

$

ln -s original-file new-file - Creates a new file linked to the original file. The
-s option creates a ”soft link”, which links to the filename. A soft link will share
the contents of the original file, as long as the name and location of the original
file are maintained.

$ ln -s exampleFile linkedExample

$ ls -l

total 4

-rw-------. 1 jmockler jmockler 0 Apr 27 10:05 copiedExample

-rw-------. 1 jmockler jmockler 0 Apr 27 10:02 exampleFile

drwx--x---. 2 jmockler jmockler 2 Apr 27 10:03 ExampleSubfolder

lrwxrwxrwx. 1 jmockler jmockler 11 Apr 27 10:04 linkedExample -> exampleFile

$

mv file dir - Moves the given file to the given directory.

$ ls

copiedExample exampleFile ExampleSubfolder linkedExample

$ ls ./ExampleSubfolder

$ mv copiedExample ExampleSubfolder

$ ls

exampleFile ExampleSubfolder linkedExample

$ ls ./ExampleSubfolder

copiedExample

$

wc file - Reports the number of lines, words, and characters in a file. wc -l
reports only the number of lines.

$ wc exampleFile

4

0 0 0 exampleFile

$

du - Reports the disk usage of the directory. Sizes are in kilobytes. If sizes are
not in kilobytes, the -k option will force them to be. The -s option reports only
the total size of the directory, ignoring individual components.

$ du

3 ./ExampleSubfolder

7 .

$ du -sk

7 .

$

rm file - Deletes the given file.

$ rm ./ExampleSubfolder/copiedExample

$ ls ./ExampleSubfolder/

$

file file - Returns the type of data in the given file.

$ file exampleFile

exampleFile: ASCII text, with no line terminators

$

rmdir name - Deletes the directory named name. This command only works
if the given directory is empty.

$ rmdir ExampleSubfolder/

$ ls

exampleFile linkedExample

$

Going into detail about most specific options for most commands is out of the
scope of this document. However, it is worth knowing about them and where
more information can be found. The command:

man command-name

can be used to open an information page about a particular command in the
terminal, which includes available options. Additionally, a Google search for
a UNIX command will always yield lots of information, and can be especially
useful if in-depth details regarding a particular option or scenario are required.

5

1.2 Useful Commands for File Manipulation

The commands and capabilities provided by UNIX are far too extensive to cover
here in any comprehensive fashion. This section will, however, present a handful
of tools that may be of particular interest.

To begin, it would be useful to have a text file for demonstration purposes.
There is an easy way to create one, using a built-in editor called ed:

$ ed

a

This is a text file.

It has been created to demonstrate UNIX commands.

Because of this, it is somewhat oddly formatted.

Someone more creative would probably have written a poem or something.

This is the fifth line of the text file.

This is probably long enough, goodbye!

.

w sample

271

q

$

Above, a tells the editor to begin adding text, . tells it to stop, and w writes
the text to a file, in this case sample. q quits the editor and brings back the
command line. To edit a file with ed, opening it will only show the character
count. To print the file, use the command ,n. To print without line numbers
use ,p. The s/old/new/p command substitutes an old expression for a new one
and prints the result. To focus on a particular line, just type the number of
that line. In the example below, some edits are made to the last line of sample.

$ ed sample

271

,n

1 This is a text file.

2 It has been created to demonstrate UNIX commands.

3 Because of this, it is somewhat oddly formatted.

4 Someone more creative would probably have written a poem or something.

5 This is the fifth line of the text file.

6 This is probably long enough, goodbye!

6

This is probably long enough, goodbye!

s/probably/too/p

This is too long enough, goodbye!

6

s/ enough//p

This is too long, goodbye!

w sampleEdited

q

Now that a file exists, it might be useful to get a quick look at its contents. A
simple way to do this is the cat file command.

$ cat sample

This is a text file.

It has been created to demonstrate UNIX commands.

Because of this, it is somewhat oddly formatted.

Someone more creative would probably have written a poem or something.

This is the fifth line of the text file.

This is probably long enough, goodbye!

$

cat prints the contents of a file into the terminal. For this sample file, and
other short files, it works great. However, for a much longer file it becomes
significantly less useful. In such a case, it can be more convenient to print just a
small part of the file’s contents. This can be done with the commands head file
and tail file . These print the first 10 and the last 10 lines of a file, respectively.
They can also be modified to print a specific number of lines, as shown in the
example below.

$ head -2 sample

This is a text file.

It has been created to demonstrate UNIX commands.

$ tail -2 sample

This is the fifth line of the text file.

This is probably long enough, goodbye!

$

There is also a less file command that opens the file in the terminal with
forward and backward scrolling capability. Pressing q exits the document after
opening it, bringing back the command line.

$ less sample

This is a text file.

It has been created to demonstrate UNIX commands.

Because of this, it is somewhat oddly formatted.

7

Someone more creative would probably have written a poem or something.

This is the fifth line of the text file.

This is probably long enough, goodbye!

(END)

It is also possible to print a file character by character, showing characters
that are normally invisible such as tab and new-line. This functionality can be
particularly useful when invisible characters need to be removed or found. The
command for this is od -c file . od without the -c option will print a file in
octals.

$ od -c sample

0000000 T h i s i s a t e x t f

0000020 i l e . \n I t h a s b e e n

0000040 c r e a t e d t o d e m o

0000060 n s t r a t e U N I X c o m

0000100 m a n d s . \n B e c a u s e o

0000120 f t h i s , i t i s s o

0000140 m e w h a t o d d l y f o r

0000160 m a t t e d . \n S o m e o n e

0000200 m o r e c r e a t i v e w o

0000220 u l d p r o b a b l y h a v

0000240 e w r i t t e n a p o e m

0000260 o r s o m e t h i n g . \n T

0000300 h i s i s t h e f i f t h

0000320 l i n e o f t h e t e x

0000340 t f i l e . \n T h i s i s

0000360 p r o b a b l y l o n g e n

0000400 o u g h , g o o d b y e ! \n

0000417

$

The \n character represents a new line. Similarly, if there were any tab charac-
ters, they would be shown as \t.

In certain cases it might be useful to examine a file’s contents organized in a
particular fashion. The sort file command organizes (alphabetizes by default)
the lines of a file before printing it.

$ sort sample

Because of this, it is somewhat oddly formatted.

It has been created to demonstrate UNIX commands.

Someone more creative would probably have written a poem or something.

This is a text file.

8

This is probably long enough, goodbye!

This is the fifth line of the text file.

$

Now suppose it is necessary to find all the lines of a file that contain a cer-
tain expression. Straightforward for a short file, but for longer files, the grep
expression file command solves the problem.

$ grep This sample

This is a text file.

This is the fifth line of the text file.

This is probably long enough, goodbye!

$

As an alternative to the example above, grep -v expression file prints all
lines that do not contain the provided expression.

It is also useful to be able to quickly compare two files. This can be accomplished
using the diff file1 file2 command. The example below first creates a new,
similar text file and then compares it to the old sample.

$ ed

a

This is a text file.

It has been created to demonstrate a UNIX command.

Because of this, it is somewhat oddly formatted.

Someone more creative would probably have written a poem or something.

This is the fifth line of the text file.

This is probably long enough, goodbye!

.

w newSample

272

q

$ diff sample newSample

2c2

< It has been created to demonstrate UNIX commands.

> It has been created to demonstrate a UNIX command.

$

The output from diff above states that line 2 of the first file has changed to
line 2 of the second file, and prints both lines. There is another file comparison

9

command, cmp file . cmp is less useful for text files because it only reports the
byte and line where a difference occurs, but it has the advantage of working on
binary files.

$ cmp sample newSample

sample newSample differ: byte 57, line 2

$

There are special characters in UNIX called globs that increase flexibility when
selecting or searching for things. The most common example of a glob is the
asterisk (*) which represents any string. One practical use for this is finding
files of one particular type, for example all of the text files in a directory:

$ ls *.txt

The above command lists any file in the present working directory that ends in
.txt. Another common glob is the question mark (?), which represents any single
character. This allows searches for strings of a particular length, for example
listing all files with five character names in a directory:

$ ls ?????.*

One last glob is the square brackets ([]), which represent any of the characters
contained within them. For example, to search for any file that begins with a
number:

$ ls [0-9]*

Finally, it is possible to code and run for loops in the terminal. The general
format is:

for var in list-of-words

do

commands

done

The primary use of this type of for loop is to iterate over a list of files. For
example, to print the contents of the present working directory using a for loop:

10

$for i in *

>do

>echo $i

>done

$

1.3 Processes

A process is simply a running program. Every time a command is issued from
the terminal, it starts a process. The ps command provides a list of currently
running processes.

$ ps

PID TTY TIME CMD

21029 pts/0 00:00:00 bash

24360 pts/0 00:00:00 ps

$

In the process list, PID is the process id, TTY is the terminal associated with
the process, TIME is the processor time used for the process, and CMD is the
command running.

Processes can be broken into foreground and background processes. A fore-
ground process must be completed before additional commands can be entered.
A background process runs while still allowing other work to be done. Processes
run in the foreground unless told otherwise.

An & at the end of a command tells the process to run in the background.
Alternatively, a foreground process that has already started can be suspended
with ctrl-Z, and then moved to the background with the bg command.

$ sleep 1000 &

[1] 4690

$

The jobs command gives a list of current background jobs, their status, and
an identifier. The identifier can be used with the fg %job-number command
to move a background process into the foreground. Without arguments fg will
move the most recent background process.

$ jobs

[1]+ Running sleep 1000 &

$

11

The kill %job-number command can be used to end a background process.
kill can alternatively take a process id from ps as an argument.

$ kill %1

$ jobs

[1]+ Terminated sleep 1000

$

kill can be called with the -9 option (kill -9 process-id), which forces the
process to immediately die without any opportunity to ignore the command.

1.4 Pipes

This section contains examples using a directory and files that were set up as
follows:

$ mkdir ~/Documents/PipeExamples

$ cd ~/Documents/PipeExamples

$ touch fileA fileD fileG

$ ls

fileA fileD fileG

$

It is useful to be able to chain commands using the output of previous commands
as input. This allows for one program’s output to continue being processed by
another program. Commands can save their output to a file rather than printing
it in the terminal, which allows for this functionality. For example to sort the
contents of a directory:

$ ls ~/Documents/PipeExamples >filelist

$ sort -r filelist

fileG

fileD

fileA

$

The example above returns a reverse-alphabetically sorted list of the contents
of the PipeExamples directory. The >tells the ls command to save its output
as a file with the indicated name. However, creating temporary files to run
a command is disorganized. Using a pipe is a way to avoid the creation of
temporary files. A pipe connects the output of one command to the input of

12

another without using a temporary file, and is created using the | character.
The previous example can be accomplished with a pipe as shown below.

$ ls ~/Documents/PipeExamples | sort -r

fileG

fileD

fileA

$

A second example of pipes is using head and tail to print lines from the middle
of a file. Using the old sample file, a pipe can be used to print the 4th and 5th
lines:

$ head -5 sample | tail -2

Someone more creative would probably have written a poem or something.

This is the fifth line of the text file.

$

Though these examples were somewhat trivial, they still demonstrate the effi-
ciency of using pipes. The commands were less complex, and no unnecessary
files were created. The advantages of using pipes become even more noticeable
when strings of programs get longer.

1.5 Filters

A filter is a UNIX program that takes an input, transforms it in some simple
way, and then returns some output. Several previously mentioned commands
are filters - head, tail, grep, and sort, for example. More detail on two particular
filters will be presented in this section.

tr old-character replacement

This filter replaces all instances of one character in an input with another. Using
an example file that looks like:

$cat exampleText

there are a lot of invisible

characters

in this file

$od -c exampleText

0000000 t h e r e a r e a \t \t l o t

13

0000020 o f \t i n v i s i b l e \n

0000040 \n \t c h a r a c t e r s \n i n

0000060 t h i s f i l e \t \n \t \n

0000075

$

tr can be used to replace all tab characters with something different.

$ cat exampleText | tr ’\t’ ’&’

there are a&&lot of &invisible

&characters

in this file&

&

$ cat exampleText | tr ’\t’ ’&’ | od -c

0000000 t h e r e a r e a & & l o t

0000020 o f & i n v i s i b l e \n

0000040 \n & c h a r a c t e r s \n i n

0000060 t h i s f i l e & \n & \n

0000075

$

sed ’commands’ files

The sed filter applies ed commands to input from files. The most common
command is s for substitution. For example:

$ sed ’s@a@4@g’ exampleText

there 4re 4 lot of invisible

ch4r4cters

in this file

$

In the example above the @ characters are simply separators, and can be re-
placed with any character that does not appear in the substitution strings. The
final section of the command @g makes sed work globally, or on more than one
occurence of the substitution per line. The command in this example would
translate to something like ”substitute the expression a with the expression 4
globally in exampleText.”

14

1.6 Regular Expressions

Regular expressions are a powerful tool to increase the functionality of filters.
They are patterns of characters that define searches. In this section some regular
expressions will be demonstrated using the grep filter, but they are also useful
for several others, such as sed.

Some commonly used regular expressions are:

ˆ Anchors search expression to the beginning of a line.

$ Anchors search expression to the end of a line.

[character list] Matches any characters contained in the list.

. Matches any single character.

* Matches as many of the previous expression as are found.

[ˆcharacter list] Matches any characters not contained in the list.

+ Matches one or more of the previous expression.

The following text file will be used for some examples:

$ed

a

A text file for regular expression examples.

John is at the beginning of this line.

On this line, John is in the middle instead.

The filename textFile.txt is hidden on this line.

Files that end in .txt are text files.

.

w grepSample

q

To find every line that begins with the name John:

$ grep ^John grepSample

John is at the beginning of this line.

$

To find every line that ends with line:

15

$ grep line.$ grepSample

John is at the beginning of this line.

The filename textFile.txt is hidden on this line.

$

To find every line that does not begin with a vowel:

$ grep ^[^aeiouAEIOU] grepSample

John is at the beginning of this line.

The filename textFile.txt is hidden on this line.

Files that end in .txt are text files.

$

To find any line that contains a .txt file with any string of letters as its name:

$ grep [a-zA-Z][a-zA-Z]*.txt grepSample

The filename textFile.txt is hidden on this line.

$

1.7 Permissions

Files and directories all have permissions associated with them. Recall that the
ls -l command prints these permissions (among other things) for the contents
of a directory. The permissions are represented by a string of 10 characters. For
example:

drwx--x---

The first character is a ’-’ for a file, or a ’d’ for a directory. The next three
characters are permissions for the owner with ’r’, ’w’, and ’x’ representing read,
write , and execute permissions. The next three characters represent permissions
for the group, and the final three permissions for all other users. A ’-’ indicates
not having a particular permission.

Read permission grants the ability to view the contents of a file or directory.

Write permission allows modification of the contents of a file or directory.

Execute permission grants the ability to run a file as a program.

Permissions can be changed with the chmod command. There are two ways to
use chmod. These will be demonstrated using the following file:

16

$ ls -l

total 2

-rw-------. 1 you 61 Apr 16 14:43 exampleText

The first method is the symbolic method, using the +, -, and = operators. u,
g, and o represent the owner, group, and all user categories, respectively.

$ chmod o+r,g=rw,u+x exampleText

$ ls -l

total 2

-rwxrw-r--. 1 you 61 Apr 16 14:43 exampleText

$

The second method is using numbers to represent permissions. In this method,
4 is read, 2 is write, and 1 is execute. Each group’s permissions are represented
by the sum of the numbers for the permissions they should have.

$ chmod 640 exampleText

$ ls -l

total 2

-rw-r-----. 1 you 61 Apr 16 14:43 exampleText

$

1.8 Further Reading

For more information on UNIX, the book The UNIX Programming Environment
by Kernighan and Pike is quite useful and easy to understand.

2 Emacs

Emacs is a text editor. It is free, and is programmable using Lisp. For the
purposes of this document Emacs is treated as a tool for creating text documents
for Latex and Python, but it certainly has broader uses that could be interesting
to investigate further.

To create a text document using Emacs, enter emacs name.tex or emacs
name.py into the command line. This will create a new file in the present
working directory and open it in Emacs. The .tex extension indicates that it
is intended to be a Latex document, which causes Emacs to color code the
document and later allows it to be properly converted to a formatted pdf. The
.py extension allows a file to be read as a Python script.

17

2.1 Emacs Keyboard Input

Emacs uses unique keyboard inputs that differ from a lot of commonly used
software. A list and description of some of the more common and useful Emacs
commands is presented here.

C- refers to holding down the ctrl key while pressing the next key in a command.

M- refers to either tapping the escape key before or holding down the alt key
while pressing the next key in a command.

C-x C-s saves the file.

C-g cancels the current command.

C-x C-c quits Emacs.

C- undoes the previous action.

C-spc sets a mark at the current cursor location for selection purposes.

C-w cuts selected text.

M-w copies selected text.

C-y pastes (or yanks) text that was copied or cut.

C-s opens a search function to search for an expression.

C-r same as C-s but searches in reverse.

C-f moves the cursor forward one space.

C-b moves the cursor backward one space.

C-n moves the cursor one line down, to the next line.

C-p moves the cursor one line up, to the previous line.

C-e moves the cursor to the end of the current line.

C-a moves the cursor to the beginning of the current line.

M-> moves the cursor to the end of the file.

M-< moves the cursor to the beginning of the file.

C-h opens the Emacs help page.

18

There is a built-in tutorial that can be accessed from the bottom section of a new
Emacs window or from the help menu. It is designed to familiarize new users
with basic commands, and is a good resource to start becoming comfortable with
Emacs. For additional keyboard commands there is a GNU Emacs reference
card at https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf.

3 Latex

Latex is a markup language which uses commands mixed with text to control
the eventual format of a document.

Once a Latex document is created in Emacs, it can be converted to a formatted
pdf with the pdflatex file command in the terminal.

3.1 General Document Structure

A comment in Latex is indicated with a %, and a command with a \

The beginning of a Latex document should declare the document class with:

\documentclass{article}

A document class sets default formatting and layout options. There are many
document classes other than article, such as book, report, or proc. Any packages
that will be used when constructing a document should also be declared at the
start with:

\usepackage{graphicx}

Commonly used packages include:

graphicx - Provides commands for adding graphics to a document.

amsmath - Provides additional math environment functionality.

float - Provides additional options for figure placement.

The body of a document must be enclosed in a document environment:

\begin{document}

19

https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf

Main body of the document

\end{document}

Sections with headers can be created using:

\section{heading of the section}

\subsection{heading of the subsection}

\subsubsection{heading of the subsubsection}

Bulleted lists can be added to a document with the itemize environment:

\begin{itemize}

\item first thing

\item second thing

\end{itemize}

• first thing

• second thing

Numbered lists are added similarly with the enumerate environment:

\begin{enumerate}

\item first thing

\item second thing

\end{enumerate}

1. first thing

2. second thing

To create a descriptive list, the description environment is used:

\begin{description}

\item[label 1] Text describing label 1

\item[label 2] Text describing label 2

\end{description}

label 1 Text describing label 1

label 2 Text describing label 2

Finally, to show plain text of commands as in this section, use the verbatim
environment.

20

3.2 Paragraphs

By default Latex indents paragraphs, and does not put spaces between them.
There are several ways to manipulate this.

A new paragraph can be defined by either a blank line or the \par command.
These new paragraphs will take the default formatting for paragraphs in the
document, as described above. This formatting, as well things like the depth of
indentation, can vary depending on the document class.

To change the default indentation or spacing between paragraphs for a docu-
ment, use the following commands, generally just before the beginning of the
document environment:

\setlength{\parindent}{4em}

\setlength{\parskip}{1em}

The first command sets the depth of indentation for the document, and the
second the amount of space between paragraphs. The unit ’em’ is the length of
one ’m’. There are at least a few other options to choose from if needed. To
remove indentation entirely the indent length can be set to 0pt.

It is also possible to control the indentation and spacing of individual para-
graphs. Commands and options for this can be found in the Sharelatex docu-
mentation.

3.3 Figures

Many documents require figures, and adding a figure using Latex is fairly
straightforward. The basic structure for adding a figure to a document is as
follows:

1 \begin{figure}[H]

2 \centering

3 \includegraphics[height=5cm, width=7cm]{TutorialFigure}

4 \caption{This is a graph of $y=x^2$}

5 \label{ExFigure}

6 \end{figure}

21

Figure 2: This is a graph of y = x2

This centers a 5cm tall, 7cm wide figure from the specified file at the current
location in the document. Line 1 opens the environment and specifies the lo-
cation of the figure with H. H tells Latex to put the figure at the location of
the code, and to override Latex’s normal attempts to find a better place for it.
It is only available if the float package is being used. Line 2 centers the figure.
Line 3 tells Latex what file the figure is in, and specifies the width and height.
The dimensions can also be input in other formats, such as em. includegraphics
is only available with the graphicx package. Lines 4 and 5 caption the figure
and assign it a label. The caption describes the figure, and will automatically
number it. The label is just a reference that can be called later in the document
to recall the appropriate figure number. For example, to call the figure above
like this: Figure 2, use

Figure \ref{ExFigure}

3.4 Tables

Latex can also be used to format tables. The basic structure for creating a table
is:

1 \begin{center}

2 \begin{tabular}{|l|l|}\hline

3 first & second \\

4 column & column \\ \hline

5 item11 & item12 \\

6 item21 & item22 \\

7 item31 & item32 \\ \hline

22

8 \end{tabular}

9 \end{center}

first second
column column
item11 item12
item21 item22
item31 item32

This creates a centered table with two left-aligned columns separated by vertical
lines. Line 1 places the table in a centered environment. Line 2 opens the tabular
environment and defines the table as having two left aligned columns separated
by vertical lines. The vertical lines can be removed individually by removing
the | characters from the brackets. \hline creates a horizontal line. In lines 3
through 7, the & separates the columns of the table. The text on either side is
placed into the respective cells. \\ indicates the start of a new line.

3.5 Special Characters

There are ten special characters in Latex that cannot be typed normally as text.
This is because they have special meanings used elsewhere in the language.

These characters are &, %, $, #, , {, }, ˜, ˆ, \.

In order to create these characters as text the first seven must be preceded by
a \. The final three have special macros.

\&

\%

\$

\#

_

\{

\}

\textasciitilde

\textasciicircum

\textbackslash

Additionally, if the >and <characters appear as upside down punctuation marks,
they must also be generated with macros.

\textgreater = >

\textless = <

23

3.6 Math

One of the main advantages of Latex is its ability to display math coherently.

To display an equation in text as At = A0e
−kt is shown here, simply bracket

the equation with $ on either side:

beginning of sentence $A_t = A_0e^{-kt}$ end of sentence.

To display math in a standalone fashion the equation environment is used.
Adding an * will suppress the automatic numbering functionality. Note that
the * will not work unless the amsmath package is being used. Also note that
there are several other ways to display in this fashion, this is just the easiest to
remember.

\begin{equation}

A_t = A_0e^{-kt}

\end{equation}

At = A0e
−kt (1)

\begin{equation*}

A_t = A_0e^{-kt}

\end{equation*}

At = A0e
−kt

There are other environments to display multiple equations, and to align them in
particular ways. They can be easily found along with descriptions and examples
in the Sharelatex documentation.

Equations can be referenced with labels much like figures. Reference labels can
be added to an equation like so:

\begin{equation}

A_t = A_0e^{-kt}\label{RateLaw}

\end{equation}

The equation can then be referenced in text as shown here: (1) using its label
as follows:

24

\eqref{RateLaw}

3.7 Hyperlinks

All the references in a document can be hyperlinked by importing the hyperref
package. It must be the last package imported. It can also be used to add web
links. The style of links can be changed as shown below:

\usepackage{hyperref}

\hypersetup{

colorlinks=true,

linkcolor=blue,

urlcolor=cyan,

}

colorlinks=true makes the links colored, linkcolor sets the color of the internal
links in the document (equations, figures, etc), and urlcolor sets the color of
web links.

Internal references are automatically linked when using hyperref. To link a url
use \href{text}{url}. The example below hyperlinks the Sharelatex documen-
tation.

\href{www.sharelatex.com/learn}{www.sharelatex.com/learn}

3.8 Further Reading

For information beyond what is included in this section, the documentation for
Sharelatex and The Not So Short Introduction to Latex 2e by Oetiker, Partl,
Hyna, and Schlegl are both excellent resources.

For papers that require references, Latex can manage bibliographies and ref-
erence links using the Bibtex system. Information on how to use Bibtex can
be found on the Bibtex website, http://www.bibtex.org/ or in the Sharela-
tex documentation at https://www.sharelatex.com/learn/Bibliography_

management_with_bibtex.

25

http://www.bibtex.org/
https://www.sharelatex.com/learn/Bibliography_management_with_bibtex
https://www.sharelatex.com/learn/Bibliography_management_with_bibtex

4 Python

Python is an object oriented programming language commonly used for data
analysis and scientific computing. It is designed to be easily readable, using
white space for syntax and less punctuation than many other languages.

Python can be run in a terminal window by simply entering python as a com-
mand. This is useful for testing purposes, accessing help pages, and brief coding
uses, but for any more extensive coding needs, it is better to work in a text file.
A Python script written in a text file can be run with the python file command
in the terminal.

4.1 General Concepts

Functions and their syntax will be discussed in more detail in a future section,
but there are a few common, built-in functions presented here so they can be
understood in examples:

print() - Prints its argument as output.

>>>print("This is a sentence.")

This is a sentence.

range() - Creates a list of values from 0 to its argument.

>>>range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

len() - Returns the length of its argument.

>>>len(range(10))

10

input() - Prompts the user for text input.

>>>x = input("Enter a sentence: ")

Enter a sentence: "This is a sentence."

>>>print(x)

This is a sentence.

26

help() - opens a help page for the argument provided.

To find more information on a particular function, there is extensive online
Python documentation that can be found through a Google search or on docs.

python.org.

Python syntax is largely based on indentation. Any block of code, such as a
loop, a function, or a class is defined by indentation. For example, there is a
pair of nested if statements below. If statements will be discussed in more detail
later, for now just realize that an if statement contains its own block of code.

if x < 10:

if x%2 == 0:

print(x)

else:

print("x is not divisible by 2.")

Here the two print statements are part of the inner if and else blocks, and
are therefore indented twice. The outer if block contains the inner if and else
statements, which are indented once. It is important to keep track of indentation
carefully, as improper indentation will not necessarily cause an exception. Notice
also that the opening line of a block of code ends with a ’:’.

Also in the example above, the ’==’ operator is used. This leads to an expla-
nation of assignment vs. comparison. In Python a single ’=’ is the assignment
operator. It is used to assign a value to a variable, such as in the statement x =
5. To compare two values, the ’==’, or comparison operator must be used. The
comparison operator compares the two values on the left and right, and returns
True if they are the same, or False if they are different.

>>> x = 5

>>> x == 5

True

One last important concept in Python coding is comments. Everything in a
Python script is read as code unless specifically noted as a comment by the
’#’ character. When writing a script, it is good practice to use comments to
describe the function of various blocks of code, as well as the script overall. This
allows others to pick up the code more easily, and can be useful as a refresher
for the original programmer.

27

docs.python.org
docs.python.org

4.2 Types

Information stored in a variable has a type, indicating what kind of information
it is.

Particularly important types to be aware of include:

int - an integer.

2

float - a decimal.

2.0

string - a sequence of characters.

"abc def ghi"

list - a sequence of values.

[1,2,3,4,5]

tuple - an immutable list.

(1,2,3,4,5)

dictionary - an unordered set of key:value pairs.

{’Column1’: [1,2,3,4,5], ’Column2’: [6,7,8,9,10]}

It is important to understand types and keep track of them when performing
operations on variables, since the type of a variable limits its interactions. For
example, using the ’+’ operator, numbers can be added to numbers, and strings
can be added to strings, but numbers cannot be added to strings.

28

4.3 Modules

A huge amount of additional functionality in Python requires importing modules
that contain functions and classes. Modules are imported by issuing an import
statement at the start of code:

import math

Importing a module allows its functions and classes to be used throughout the
code. It is possible to import only specific parts of a module. For example:

from math import sqrt

An important difference between these two methods is how the functions are
called. Using the sqrt() function from above:

In the first example the function would be called as math.sqrt() in the code.

In the second example, it could be called simply as sqrt(). In this case, the
imported sqrt() function would conflict with any other function called sqrt()
in the script code.

One more useful feature is the ability to import modules with a user-defined
name, which would be used instead of the module name to call functions. For
example, if math.sqrt() is too much to type regularly:

import math as m

would allow it to be typed as m.sqrt(). It would work similarly for any other
function in the math module.

Some other specific modules will be discussed in more detail in the Specific
Topics section.

4.4 Functions

A function is an executable object that can take arguments and return values.
Functions are used to organize code, streamline repeated use of the same code,
and increase readability. It is generally good practice to make use of functions
whenever possible. An example of a simple function that returns the sum and
product of two input numbers is below.

29

def SumXY(x, y):

summ = x + y

prod = x * y

return summ, prod

def defines a function name and the arguments it will take. A function can
have any name that does not conflict with a different function or a special
name. The arguments a function will expect are specified in the parenthesis
after the name, and the line should end with a ’:’. Many, but not all, functions
return some value or values upon completion. These must be assigned in the
function, and are noted by the return statement at the end of the function.

To call a function after it has been defined, simply type its name and enter
any arguments it requires. If a function returns values, they should probably
be assigned to variables so they are saved. In the example below the function
above is called on the integers 2 and 3.

>>>summ, prod = SumXY(2,3)

>>>print(summ, prod)

(5, 6)

4.5 Flow Control

Flow control statements are loops or conditionals that specify how or when to
execute a particular block of code. This section presents basic applications of
standard flow control statements.

if - The if statement sets a condition that must be met to execute certain code.

if x < 10:

x = x + 1

In the example above, the program will check the value of the variable x, and
only execute the code inside the if block if the x <10 condition is met.

for - The for statement is used to iterate over items in any iterable object, such
as a list.

for i in range(5):

print(i)

0

1

30

2

3

4

while - The while statement continues executing a block of code until its con-
dition is no longer true.

x = 100

while x > 10:

x = x / 2

print(x)

50

25

12

6

break and continue allow more control over exiting loops. In the examples
below a list is used, which is defined as:

ExampleList = [0, 1, 2, 3, 4, 5]

break - The break statement immediately exits a loop.

for i in range(len(ExampleList)):

if ExampleList[i] == 2:

break

print(ExampleList[i])

0

1

continue - The continue statement skips the remainder of the current iteration
of a loop and moves on to the next iteration.

for i in range(len(ExampleList)):

if ExampleList[i] == 2:

continue

print(ExampleList[i])

0

1

31

3

4

5

Specific exceptions can be caught using try and except. A program will first
attempt to run whatever is inside the try block. If an exception occurs, the
program will jump to the except statement and check if the exception matches
the type specified. If it does, the program will execute the except block.

try:

x = float(input("Enter a number: "))

except ValueError:

print("That wasn’t a number!")

Enter a number: "number"

That wasn’t a number!

4.6 Classes

A Class is an object with local variables and functions, called attributes and
methods, associated with it. Classes are defined using the class keyword. Vari-
ables contained within the init method of a class are attributes, and are
associated with individual objects of the class, assigned upon creation.

class Pet:

def __init__(self):

self.species = "Dog"

def change_species(self, newSpecies):

self.species = newSpecies

The Pet class has a species attribute, and a method that allows its species to be
changed. Any newly defined Pet will have a species of Dog until it is changed.
Attributes and methods of a class are called upon with the dot (.) operator.
An example of using the Pet class is shown below.

>>>Spot = Pet()

>>>print(Spot.species)

Dog

>>>Spot.change_species("Cat")

>>>print(Spot.species)

Cat

32

Classes can be intiated with input when new class objects are created. For
example, the Pet class can be rewritten to allow a newly created object to have
its species and a new attribute, age, defined for it at inception.

class Pet:

def __init__(self, species, age):

self.species = species

self.age = age

def change_species(self, newSpecies):

self.species = newSpecies

Now when an object is made as a Pet class, it takes two arguments to define
the new Pet’s attributes, species and age.

>>>Spot = Pet("Dog", 5)

>>>print(Spot.species, Spot.age)

(’Dog’, 5)

4.7 Interacting with the System

Many Python programs must be able to take command line arguments such as
options or inputs when they are run. The sys module, described in a bit more
detail later, provides access to a list of the command line arguments that are
provided when a program is run.

A second useful module is the argparse module, which streamlines handling
different types of arguments and helps create useful error messages.

There are two kinds of arguments: optional and positional. Optional arguments
are indicated by a ’-’ or ’- -’. Positional arguments are just names, such as a list
of files.

The argparse module allows for the easy addition of expected arguments, and
immediately classifies them. It also automatically creates a help message, which
is updated by the individual help statements provided for new arguments.

Below is an example of a program making basic use of argparse.

1 import argparse

2

3 def mult(x):

4 prod = 1

33

5 for i in range(len(x)):

6 prod = prod*x[i]

7 return prod

8

9 parser = argparse.ArgumentParser(description=’Multiply

10 integers.’)

11

12 parser.add_argument(’integers’, metavar=’N’, type=int,

13 nargs=’+’, help=’an integer for the accumulator’)

14

15 parser.add_argument(’--mult’, dest=’accumulate’,

16 action=’store_const’, const=mult, default=max,

17 help=’sum the integers (default is max)’)

18

19 args = parser.parse_args()

20 print(args.accumulate(args.integers))

As usual, the program begins by importing the relevant modules, in this case
argparse. Lines 3-7 define a simple function that takes a list of integers, x, and
returns their product.

In line 9, the argument parser is initialized, and is provided a brief description
of the program’s purpose. This must be done before any arguments are added.

Lines 12-17 add the relevant arguments. The first argument added is the list of
integers to be multiplied. The arguments provided here are:

’integers’ The name of the argument.

metavar=’N’ A pseudonym for the argument. It will appear in help text,
for example.

type=int The type that the argument should be parsed as.

nargs=’+’ The number of arguments expected. ’+’ indicates any num-
ber more than 0.

help=’a list of
integers’

The message that should appear inside the help text for the
given argument.

The second argument added is the optional argument to tell the program to run
the mult function. The arguments for this addition are:

’- -mult’ The name of the argument. The ’- -’ indicates it is an
optional argument.

34

dest=’accumulate’ The name of the attribute added to the object re-
turned by parse args().

action=’store const’ Defines the action to be taken with the associated
command line arguments. ’store const’ stores the value
specified by the const keyword. The default action
is ’store’, which stores the command line argument’s
value.

const=mult Defines the value to be stored by the action.

default=max Defines the value to be used if the optional argument
is not entered in the command line. Here the default
is the built in max function, which returns the maxi-
mum of the integers.

help Same as in the first argument, indicates the message
to be displayed when the help option is called.

Line 19 tells the program to run the argument parser on any arguments entered
into the command line when the program is run.

Line 20 simply prints the results of the program.

Here are some examples of successful and unsuccessful attempts to run the
multiplier.py program:

$ python multiplier.py 1 2 3 --mult

6

$python multiplier.py --mult

usage: multiplier.py [-h] [--mult] N [N ...]

multiplier.py: error: too few arguments

$python multiplier.py --help

usage: multiplier.py [-h] [--mult] N [N ...]

Multiply integers.

positional arguments:

N a list of integers

optional arguments:

-h, --help show this help message and exit

--mult multiply the integers provided. Example command: $python

multiplier.py 1 2 3 --mult

35

$python multiplier.py 1 2 3

3

$

4.8 Specific Topics

4.8.1 String Formatting

Strings can be concatenated with other strings in Python, but adding other val-
ues (without first changing them to a string) can require some special formatting.
The string.format() function provides flexible options for such formatting.

Arguments of format() can be given as a list or assigned to variables. These
arguments are called in the string using {}, and either the index in the list or
the variable name associated with a particular argument.

>>> "I can count! {0}, {1}, {2}!".format(1, 2, 3)

’I can count! 1, 2, 3!’

>>> "I can count! {first}, {second}, {third}!".format(first = 1, second = 2, third = 3)

’I can count! 1, 2, 3!’

The arguments from format can be formatted in specific ways, such as having a
particular number of decimal places, using scientific notation, or being padded
with zeroes.

>>> x = 3.4589798645679456

>>> y = 4.58976894576

>>> "x with 3 floating points is: {0:.3f}. y with 2 floating points is {1:.2f}".format(x,y)

’x with 3 floating points is: 3.459. y with 2 floating points is 4.59’

>>> z = 123456789

>>> "z in scientific notation is: {0:.2E}".format(z)

’z in scientific notation is: 1.23E+08’

>>> c = 22

>>> "c with 3 figures is: {0:03d}".format(c)

’c with 3 figures is: 022’

Specific attributes of arguments that have them can also be formatted. For
example, using an object of the Pet class from the Classes section:

36

>>> Spot = Pet("Dog", 5)

>>> "Spot is a {0.species}, and is {0.age} years old.".format(Spot)

’Spot is a Dog, and is 5 years old.’

4.8.2 Array Slicing

Suppose there is an array defined as:

ExampleList = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

It is possible to take various slices of the whole array using the ’:’ with indices.
The basic format is ExampleList[start:end]. Here are some examples:

The array from the 3rd index to the end

>>>ExampleList[3:]

[3, 4, 5, 6, 7, 8, 9, 10]

The array from the 4th index to the 8th index. Note that the end index is non-inclusive.

>>>ExampleList[4:8]

[4, 5, 6, 7]

The array from the beginning to the 7th index.

>>>ExampleList[:7]

[0, 1, 2, 3, 4, 5, 6]

The numpy module includes lots of functionality for working with arrays. When
working with a 2-dimensional numpy array, the syntax for slicing is similar, but
must account for rows and columns.

>>>import numpy as np

Defines and prints a 2-d array

>>>ExampleArray = np.array([[1,2,3,4,5],[5,6,7,8,9,10]])

>>>ExampleArray

array([[1, 2, 3, 4, 5],

[6, 7, 8, 9, 10]])

Prints the 2nd row of the array

>>>ExampleArray[1,:]

array([6, 7, 8, 9, 10])

37

Prints the 4th column of the array

>>>ExampleArray[:,3]

array([4, 9])

Prints the value of the array at the 2nd row, 5th column.

>>>ExampleArray[1,4]

10

4.8.3 re Module

The re module offers regular expression operations in Python. It recognizes the
same regular expressions described in the UNIX regular expressions section, as
well as a multitude of others that can be found in documentation. The module
also provides several options for search functions. Here are a few:

re.search(pattern, string) - Looks for the first location in the string that
matches the pattern and returns a match object. If there are no matches returns
None.

re.match(pattern, string) - Checks if the pattern matches the beginning of
the string, and returns a match object if it does. Otherwise returns None.

re.findall(pattern, string) - Returns all matches to the pattern in the string
as a list.

>>> re.search(’this’, ’Does this line contain this?’)

<_sre.SRE_Match object at 0x7f0c1c7027e8>

>>> re.match(’this’, ’Does this line contain this?’)

>>> re.findall(’this’, ’Does this line contain this?’)

[’this’, ’this’]

A match object has a boolean value of True, and contains a list of subgroups of
the match.

match.group() - Returns subgroups of a match. match.group(0) returns the
entire match, while math.group(1), etc, return the subgroups in order.

In the following example, \w+ matches any single word. ’()’ indicate the start
and end of a group.

>>> m = re.search(’(\w+) (\w+)’, ’Word1 Word2 Word3’)

38

>>> m.group(0)

’Word1 Word2’

>>> m.group(1,2)

(’Word1’, ’Word2’)

There are a few operators to be aware of when inputting regular expressions
using re:

? Makes the preceding expression optional for a match.

\ Reads a special character as plain text.

| Matches either the left or the right side expression.

4.8.4 glob Module

The glob module provides the glob.glob function which allows Python to find
pathnames similarly to the UNIX command line. It accepts UNIX globs.

To demonstrate, here is a directory with some files in it:

$ mkdir ~/Documents/GlobExample

$ cd ~/Documents/GlobExample

$ touch 1.txt 10.png 2.txt 20.png random.txt 2.png

$ ls

10.png 1.txt 20.png 2.png 2.txt random.txt

$

Now glob can be used to find various file combinations:

>>> import glob

>>> glob.glob("*.png")

[’2.png’, ’10.png’, ’20.png’]

>>> glob.glob("?.txt")

[’1.txt’, ’2.txt’]

>>> glob.glob("?.*")

[’1.txt’, ’2.png’, ’2.txt’]

39

4.8.5 sys Module

The sys module provides interfacing options with the interpreter. Its primary
use is to provide a list of command line arguments that a program is given.
This list is called sys.argv. The first item in the list, sys.argv[0] is always
the name of the script that is being run. Items afterwards are the arguments
provided.

The example code below shows how to use the sys.argv list of the sys module
to read one file, reverse its lines, and print them in a new file.

Imports the sys module

import sys

Opens the first file in read mode, and copies its lines to a

variable. Closes the file afterwards.

input = open(sys.argv[1], "r")

lines = input.readlines()

input.close()

Reverse the list of lines.

lines.reverse()

Opens the second file in write mode and copies the reversed

lines into it one at a time.

output = open(sys.argv[2], "w")

for l in lines:

lines.strip() removes any whitespace from the start

and end of each line.

print >> output, line.strip()

output.close()

4.9 Further Reading

Many Python modules have their own documentation that can be found online.
There are a few modules not mentioned here that it would be particularly worth
looking in to:

Sympy - A module for symoblic math operations.

http://www.sympy.org/en/index.html

Pandas - Contains the Dataframe object and input and output functionality for
csv files.

40

http://www.sympy.org/en/index.html

https://pandas.pydata.org/

MatPlotLib - Provides plotting functionality.

https://matplotlib.org/

41

https://pandas.pydata.org/
https://matplotlib.org/

References

The UNIX Programming Environment by Kernighan and Pike

The Not So Short Introduction to Latex 2e by Oetiker, Partl, Hyna, and Schlegl

Sharelatex documentation - www.sharelatex.com/learn

Python documentation - docs.python.org

42

docs.python.org

	UNIX
	File System
	Useful Commands for File Manipulation
	Processes
	Pipes
	Filters
	Regular Expressions
	Permissions
	Further Reading

	Emacs
	Emacs Keyboard Input

	Latex
	General Document Structure
	Paragraphs
	Figures
	Tables
	Special Characters
	Math
	Hyperlinks
	Further Reading

	Python
	General Concepts
	Types
	Modules
	Functions
	Flow Control
	Classes
	Interacting with the System
	Specific Topics
	String Formatting
	Array Slicing
	re Module
	glob Module
	sys Module

	Further Reading

